Jay Leno’s Garage Achieves Antique Car Replacement Part for One-Tenth the Cost with 3D Systems’ Solutions

Jay Leno’s
Garage Achieves Antique Car Replacement Part for One-Tenth the Cost with 3D
Systems’ Solutions

Jay Leno will be the first to tell you that
embracing old cars does not mean embracing old technology. In fact, Leno’s love
for old cars has encouraged the exploration of new technology in order to keep
his priceless collection of vehicles in working order, as was the case with his
recently restored 1916 Owen Magnetic. With over a century’s worth of corrosion
on the valve cover of Leno’s antique hybrid car, the former host of The
Show and current star of Jay Leno’s Garage on
CNBC needed a replacement part that would perform as well as, if not better
than, the original without breaking the bank. A repeat customer and
collaborator of 3D Systems, Leno’s team used a digital workflow to reverse
engineer a new and improved valve cover before sending the part to 3D Systems
On Demand Manufacturing for a 3D printed investment casting pattern. In the
end, 3D Systems’ end-to-end manufacturing solutions helped Leno’s team replace
the dilapidated valve cover for one-tenth the cost of traditional methods.

100-Year-Old Vehicle

The challenge of maintaining old cars typically
presents itself well before the vehicle reaches its one-hundredth birthday.
After a few decades, replacement parts become scarce and part prices increase
accordingly. Given the difficulty and expense of repairs, cars that survive a
full century are typically relegated to museums and private collections where
they transition into a stationary thing of beauty. As a diehard car enthusiast,
however, Jay Leno was determined that this would not be the fate of his 1916
Owen Magnetic, which was one of the first-ever commercially available
gas-electric hybrid cars.

In order to keep his Owen Magnetic’s wheels in
motion, Leno and his team had a distinct challenge to overcome. “When we began
renovation, the valve cover, which provides a passageway for the engine
coolant, looked like a piece of Swiss cheese,” Leno said. “You can’t find one
of these in a junkyard, and from looking at the original part there is evidence
of previous failed attempts to fix it with everything from Elmer’s Glue to JB

Engineering the Manifold Cover

The task of finding a better solution for the valve
cover repair fell to Jim Hall, Leno’s Chief Engineer. No stranger to challenging custom car repair jobs, Hall stays current with the
technologies at his disposal and was well on his way to a solution in a matter
of hours. “Since fixing the original valve cover was not a realistic option for
us, my approach was to enhance the original part with help from some new
technologies,” said Hall.

The reverse engineering workflow started with 3D
scanning the original valve cover using a FARO¨ Design ScanArm into Geomagic Design X™ reverse engineering software. Unlike
red laser line scanners, blue laser line scanners are able to scan both the
black and polished surfaces on the original part in a single pass. The point
cloud data was then sent to 3D Systems’ 3D Modeling
team for help transforming the 3D scan data into a
final CAD model.

3D Systems’ technicians worked with Hall to improve
the performance and aesthetics of the original part while maintaining the
handmade authenticity of a one-hundred-year-old casting. Many of the final
updates were made possible due to the unique toolsets of Geomagic Design X
which allowed 3D Systems’ technicians to replace the corroded and pitted
topography of the original part with smooth surfaces while cleanly extracting
design elements to enhance the final appearance.

For example, the name “Owen Magnetic” is raised on
the exterior of the valve cover in letters of decreasing size designed to fit
within boundary lines above and below the text. In the original design, the
letters were likely produced by hand-cutting them out of a wax sheet and
attaching them to the master wax pattern. As a result, the text on the original
part had many imperfections, both on individual letters and in the general
alignment of the letters within the boundary lines. Hall asked 3D Systems to
help maintain the authenticity of the imperfect letters while correcting the
alignment. 3D Systems technicians did just that and mapped the handmade
imperfections along new and improved defining lines to give the final part a
more polished look than the original.

Functionally, the 3D Systems team also worked with
Hall to redesign features on the part’s interior that had been heavily eroded.
Following Hall’s requests, 3D Systems’ technicians thickened several structural
features and widened their connections to help make them more resistant to
erosion. Finally, the technicians added a few millimeters to the manifold
mounting surface to accommodate a subsequent face milling operation to provide
a smooth surface for the gasket to seal against and prevent coolant leakage.

Printing the Investment Casting Pattern

Once the valve cover design was ready, 3D Systems’
On Demand Manufacturing team exported a solid model from Geomagic Design X and
opened it in 3D Systems 3D Sprint™
additive manufacturing software
. Using 3D
Sprint’s set of advanced mesh creation and editing tools, they converted the
solid model into a detailed mesh and then scaled it to account for the shrink
factor of the metal alloy it would be cast in. 3D Systems’ technicians then set
up the print to build as a stereolithography (SLA) QuickCast¨ pattern.
QuickCast patterns are designed specifically for investment casting and are
primarily hollow builds that contain an internal network of hexagonal support
structures. A hollow build reduces the amount of material required and the
internal geometry of QuickCast patterns facilitates drainage and burn out.
Final printing was done on a 3D Systems ProX¨ SLA 800 printerwith Accura¨ CastPro™ resin.

“Our SLA 3D printing offers the highest accuracy of
any 3D printing process,” said Cyle Caplinger, Regional Sales Manager for 3D
Systems. “Since our SLA support structures can be torn away rather than
dissolved, 3D Systems SLA requires minimal post-processing and produces an
excellent surface finish which results in impeccable casting patterns.” In
fact, Caplinger says the investment casting foundry was so impressed with the
quality of 3D Systems’ QuickCast pattern that they asked for another pattern to
submit to an international casting competition after delivering the final
manifold for the Owen Magnetic.

Once 3D printed, the QuickCast investment casting
pattern was delivered to SeaCast, Inc., a foundry in the Pacific Northwest.
SeaCast used the 3D printed casting pattern to form a mold for aluminum
casting, which was then cast and shipped to Jay Leno’s Garage for final
finishing and fitting.

for Another 100 Years

After performing the prescribed face-milling,
drilling, painting and polishing, Hall installed the replacement valve cover in
its rightful place on top of the Owen Magnetic’s Buda engine.

According to Leno, it works perfectly. “That’s the
great thing about this kind of technology,” Leno said. “Parts are no longer
lost to time. We’re ready to go for another hundred years.”

Are you looking to bring more efficiency into your
automotive restoration process? Contact 3D Systems today
to learn more.

Leave a Reply

© All Rights Reserved. All content published on this site is the property of Prime Creative Media. Unauthorised reproduction is prohibited